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Abstract— An infant’s risk of developing neuromotor
impairment is primarily assessed through visual exami-
nation by specialized clinicians. Therefore, many infants
at risk for impairment go undetected, particularly in
under-resourced environments. There is thus a need to
develop automated, clinical assessments based on quan-
titative measures from widely-available sources, such as
videos recorded on a mobile device. Here, we automatically
extract body poses and movement kinematics from the
videos of at-risk infants (N = 19). For each infant, we calcu-
late how much they deviate from a group of healthy infants
(N = 85 online videos) using a Naïve Gaussian Bayesian
Surprise metric. After pre-registering our Bayesian Surprise
calculations, we find that infants who are at high risk for
impairments deviate considerably from the healthy group.
Our simple method, provided as an open-source toolkit,
thus shows promise as the basis for an automated and
low-cost assessment of risk based on video recordings.
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I. INTRODUCTION

DEVELOPMENTAL disorders, including those caused by
neuromotor disease, are the most common source of

childhood disability, affecting 5-10% of children and 3.7 to
7.4 million American children [1], [2] and are often the
cause of lifelong disability. Early intervention may improve
outcomes in neuromotor disease, but requires accurate early
identification of infants at risk for physical disability [3], [4].
For effective widespread early identification, easily-deployed
automated risk assessment tools are needed to quantify infant
movement in the first few months of life during the develop-
ment of motor control.

Many factors describe a ‘good’ diagnostic test. A test’s
predictive ability is key. Beyond that, it is desirable that
tests are based on quantitative measurements and a series
of well-defined steps. This motivates the development of
quantitative tests to supplement qualitative clinical judgment.
Second, it is important to evaluate the accessibility of a test.
Clinical assessments often involve expert judgment and expen-
sive equipment, which are only accessible in highly-resourced
environments. This impacts families of limited means and
in low-resource countries, where the burden of disability is
higher [5], [6]. Even in highly-resourced environments, a test
that is accessible can enable continuous monitoring of disorder.
The pipeline we introduce in this article provides a means to
achieve such quantitative and accessible evaluation.

Many clinical tests have been developed to assess neu-
romotor risk. The General Movements Assessment and the
Hammersmith Infant Neurological Examination have high
sensitivity and specificity [7]. These tests are effective at
detecting disorder early, at less than four months corrected
age [3]. The Test of Infant Motor Performance has been
shown to detect the changes in the movement patterns pre-
and post- treatment for infants later diagnosed with cerebral
palsy [8]. Despite their high accuracy, these clinical tests have
shortcomings. First, they require expert administration [9],
[10] and specialized training of licensed clinicians. Thus, these
clinical tests are predictive, but are qualitative and have limited
accessibility.

The past two decades have seen the development of sensor-
based measurements of infant movement to quantify move-
ment features. Wearable sensors and 3-D motion capture have
been used to measure infant movement in laboratory set-
tings [11]–[18]. Sensor-based measurements provide an objec-
tive and quantitative means for risk assessments. However,
these measurements are restricted to laboratory and clinical
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settings, thus hindering the ability to evaluate infants in their
natural environments. Moreover, sensor-based methods have
limited access as they are costly and time-intensive. Thus,
sensor-based approaches to diagnostics can provide quantified
assessment, but have limited deployability and accessibility.

In the last decade, scientists have developed systems
for video-based assessments using optical flow which hold
promise to be widely accessible as they can be implemented on
mobile devices [19]–[21]. Such methods typically use frame
differencing of a video to estimate movements by tracking the
centroid of motion. This technique can be extended to the mea-
surement of movement of each limb [19]. Using this approach,
the amount of movement and the frequency of movement have
predicted clinical outcomes [20], [22]. However, such frame
difference metrics rely on centroid estimates that only measure
centroidal movements as opposed to measuring individual joint
or limb segment movements. The extraction of limb movement
from optic flow also requires careful parameter selection and
manual adjustment of the tracking algorithm. As an alternative,
markerless methods have been developed for the tracking of
infant movement [23], [24]. However, these methods require
depth images, are computationally intensive and the models
are likely to be overfit to the relatively small datasets on which
they are trained. In sum, video-based diagnostics provide quan-
titative metrics that have the potential to be widely accessible,
but to be successfully applied, they must be effective on easily
obtained 2-D videos, extract movement features of individual
body-parts, and require minimal manual tuning.

Here, we provide a first step toward making video-based
neuromotor assessment widely available (Figure 1). We pro-
duce a ‘normative’ reference database of infant movements
using 85 videos found online. We calculate the movements
of the body parts using an existing pose-estimation algorithm,
OpenPose [25], which we augmented using domain adapta-
tion with our own labelled dataset of infant pose consisting
of 9039 infant images. Using this normative database we can
calculate how much each infant deviates from the typical
movements of healthy infants using a single score, the Naïve
Gaussian Bayesian Surprise [26]. When we then tested this
system on a clinical population (N = 19) where the level of
neuromotor risk was assessed by a clinician (low, moderate,
and high), we found that Bayesian Surprise varied across
participant groups. Thus, we have developed an open-source
framework that calculates the Bayesian Surprise of movement
features given a reference database of ‘normative’ infants.

II. METHODS

Ethical approval for this study was provided by the Univer-
sity of Pennsylvania Institutional Review Board (IRB protocol
number 822487) and the Children’s Hospital of Philadelphia
Institutional Review Board (IRB protocol number 15-012110).
The parents of the infants shown in Figures 1, 2, and 4 pro-
vided informed, written consent for those images be published.

A. YouTube Data

In order to develop a framework that predicts the neuro-
motor risk level of infant movement, it is helpful to have
an estimate of what is expected or normal. By creating such
a ‘normative’ database, we can then estimate the probability

Fig. 1. Flowchart of the pipeline for computer vision-based neuromotor
risk assessment. We created a normative database infant movement
using videos found online (85 infants) and recorded infants at risk of
neuromotor disease in a clinical setting (19 infants). Using video frames
labelled with body-part landmarks from a subset of our video dataset,
we adapted a pose estimator (OpenPose) to extract the pose of infants
which we improved using domain adaptation. Using the adapted system,
we then extracted pose from all videos. Next, from the pose data,
we quantified kinematic features for each infant. Finally, our neuromotor
risk prediction used Naïve Gaussian Bayesian Surprise that estimated
the probability that each infant belonged to the reference population.

that the movements of a new infant belong to the normative
distribution, thereby assessing the probability that the infant
is healthy. In previous work, we have shown that online
video databases are a useful source of human movement
data [27]. In the present study, we built a normative database
of infant movements based on video data of infants from
YouTube, assuming that found videos represented healthy
infant movement. This assumption is bolstered by the fact
that each YouTube video was reviewed by two expert physical
therapists to flag any infants whose movements or appearances
suggested impairment. None of the videos included in our
normative database obtained from YouTube were assessed by
the experts to have impairments. Moreover, the curators who
were searching for YouTube videos were asked not to include
any videos where the video title or description suggested
impairment. We used search terms such as ‘one-month old’,
‘two-month old’, etc. Search terms that resulted in suitable
videos for inclusion in our normative database or for domain
adaptation of our pose-estimation system are provided as
supplemental data.

In our initial search, we identified 420 video segments
featuring infants, where infants were non-occluded, where
infants moved independently, and where most of the body was
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present in the frame throughout the segment. We also selected
videos that did not have significant camera movements. In our
analysis, we included 95 of the 420 videos found that were
over 5 seconds in duration, and where pose estimates were
of sufficient quality for the extraction of basic kinematic
variables, as evaluated by visual inspection (mean recording
duration per infant = 39 s (SD = 33)). Details about the
YouTube videos that were used in the study and URLs for
the videos themselves are provided in a document along with
this article (meta_data_youtube_dataset.csv). These details are
the video URL and title, the search term used to find each
video, timing of the video excerpt where the infant was non-
occluded, a record of the videos that were annotated, and
videos that were included in the healthy reference sample. Two
physical therapists estimated the ages of infants (mean rated
age in weeks (SD) = 9.67 (6.26), There was reasonable agree-
ment between raters (inter-rater reliability: r =.76, p <.0001,
n = 85). The age rating averaged across raters was used to
classify infants as being more or less than 10 weeks of age
(see Data analysis). When there was more than one video
per infant, we included in the dataset the video with the
longest duration. This database, containing video recordings
of 85 different infants, provided a reasonably large ‘normative’
database of infant movements against which to compare the
kinematic features extracted from infant video data collected
at the lab.

B. Clinical Data

Infants tested in person were recruited through The Chil-
dren’s Hospital of Philadelphia (CHOP), University of Penn-
sylvania (Penn), and the local community. A subset of the
infant data reported here were used in a previous study,
which focused on the development of a method to track
infant movement using a multiple view stereoscopic 3-D vision
system [28]. Infants were screened to determine eligibility.
Inclusion criteria for full-term infants (born at a gestational
age of > 37 weeks) were the absence of any significant
cardiac, orthopedic, or neurological condition. Infants born
preterm (gestational age < 36 weeks) were recruited from
the Newborn/Infant Intensive Care Unit (N/IICU) at CHOP.
All infants were between the ages of 3 and 11 months. Infants
who could walk were excluded. Parents of eligible participants
provided written informed consent. The human subject ethics
committee at Penn served as the IRB of record for this study
(UPENN IRB # 822487). Data were collected from infants at
CHOP, a local childcare facility, and at the Penn Rehabilitation
Robotics Lab.

Before testing, an experienced pediatric physical thera-
pist evaluated the infants’ level of risk using the Bayley
Infant Neurodevelopmental Screener (BINS). This screener
includes specific tasks that experts administer to observa-
tionally score infants based on the Bayley Scales of Infant
Development [29]–[31]. The experts did not have access to
the Bayesian Surprise outputs of the algorithm we developed
here. We assessed risk of neuromotor dysfunction as classified
by the BINS test (low, moderate, high) computed at corrected
age for preterm infants and chronological age for full-term
infants.

Fig. 2. Infant testing at CHOP in the PANDA gym. The infant was
placed at the center of a sensorized mat and was recorded using GoPro
cameras.

To assess neurodevelopmental risk, the BINS addresses
several areas of ability: basic neurological functions/intactness
(posture, muscle tone, movement, asymmetries, abnormal
indicators); expressive functions (gross motor, fine motor,
oral motor/verbal); receptive functions (visual, auditory, ver-
bal); and cognitive processes (object permanence, goal-
directedness, problem solving). The BINS consists of six item
sets, each containing 11 to 13 items. Each item in the BINS is
scored ‘optimal performance’ or ‘non-optimal performance’
using pre-defined rules. Optimal responses for a given item
set are summed to give a raw score. For each item set,
two previously established raw cut scores identify a given
infant’s level of risk for neurological impairment, resulting
in three risk groupings: low risk, moderate risk, and high
risk.

The Play And Neuro-Development Assessment (PANDA)
Gym uses toys with sensors, cameras, and a mat structure
which measures the center of pressure of the infant (Figure 2).
The video data collected by the gym are pairs of color
images extracted from high resolution (1920 x 1080) Go Pro
Hero 4 Session videos. Two cameras were mounted on four
3-D printed stereo frames and the videos were captured at
30 frames per second, with one setup placed directly above
the infant and the other positioned on the infant’s right side,
mounted on the side frame of the gym’s platform. In the
current work, we used data from one GoPro camera for
each infant. The platform structure is lightweight, made with
colored PVC tubing and a sensorized mat (4 × 4 ft), which
is developed using a DragonPlate carbon fiber foam core
board with four force sensors on each corner. Vinyl and
foam padding cover the dragon board to make it comfort-
able for the infant. Before each infant trial, both systems
undergo calibration. A GUI allowed data collection from
all sensors and real time tracking of an infant’s center of
pressure.

The original purpose of the experiment was to examine
the infants’ interactions with sensorized toys, while their
movements were recorded using the sensorized mat and GoPro
cameras. Sensorized toys contained inertial measurement units
(MPU-9150, InvenSense, San Jose, CA) to measure infants’
toy interactions. The experiment included three toy conditions
where different toys were hung above the infant (elephant,
orangutan, lion, Figure 2) and a fourth baseline condition
without the hanging toys (No-toy condition). Since the toys
occluded the view of the infant, this caused the pose estimation
to fail. Therefore, here, we restricted our analysis to the No-toy
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condition, where the infant was non-occluded and moved
spontaneously. The PANDA gym experiment provided video
recordings that allowed us to examine infants’ spontaneous
movements.

In each trial, the infant was laid in a supine position
inside the PANDA gym and video data were collected using
the GoPro cameras. Preterm infants were 2 females and
8 males (mean corrected age (SD) = 14.39 weeks (6.92),
mean chronological age (SD) = 24.84 weeks (4.77)). Full-term
infants were 17 females and 4 males (mean chronological age
(SD) = 26.28 weeks (9.88)). The data of four preterm infants
and three full-term infants were excluded due to missing
BINS score data. The data of two full-term infants were
excluded because infants were sitting during the video, which
prevented successful pose estimation. The data of a further
three full term infants were excluded due to missing video
data.

This left us with a final sample containing 19 infants
(see Supplemental Table I at external figshare link). Preterm
infants were 1 female and 5 males (mean corrected
age (SD) = 17.64 weeks (4.82), mean chronological age (SD)
= 26.74 weeks (4.54)). Full-term infants were 10 females
and 3 males (mean chronological age (SD) = 24.65 weeks
(9.44)) with 5 infants at low-risk, 9 infants at moderate risk,
and 5 infants at high risk, as evaluated by the BINS score.
There was a mean (SD) total recording duration of 287.57 s
(161.02) per infant.

C. Pose Estimation

In order to extract pose information from videos, we used
OpenPose, a pose-estimation algorithm [25]. OpenPose con-
sists of convolutional neural networks that have been trained
using labelled image data to identify 2-D human joint and
limb positions from images. OpenPose extracts positions of
nose, neck, ears, eyes, shoulders, elbows, wrists, hips, knees,
and ankles from 2-D videos. On a system with multiple
graphical processing units, OpenPose can run in real time
(∼30 frames/second). With this processing speed, OpenPose
provides a viable method for performing motion capture from
2-D videos.

Due to differences between adults and infants in their
appearance and pose, pose tracking using OpenPose was ini-
tially limited in performance. We therefore adapted OpenPose
for infants. We created a dataset of infant images with labels
of joint positions. We required that infants be non-occluded,
and that their full body be in the frame. We included the
first 10 s of 107 video segments collected from YouTube that
were assessed to be appropriate to train on and the first 30 s
of 17 out of the total 19 videos from the clinical dataset.
The URLs and timing information of the YouTube video
data used for domain adaptation is provided as supplemental
data. Videos were selected in order to have a representative
set of images for domain adaptation that describe infant
pose, in terms of infant appearance, clothing, pose, video
background, and image scale. We labelled the video frames
with body landmarks using Vatic, a video annotation tool [32].
Videos were labelled to match the format of the Common

Objects in Context dataset [33], with labels for left and right
eyes, ears, shoulders, elbows, wrists, hips, knees, ankles, and
nose, and a bounding box around all points. We included
all frames in the labelled dataset, resulting in a total of
36,030 images with labelled pose (32,417 in the training
set, 3,613 in the test set). We initialized domain adaptation
with pretrained weights from previous work [25] and updated
weights by gradient descent for 50 iterations. This resulted in
a pose estimator that could extract an infant’s pose from 2-D
video.

D. Data Analysis

Using the pose-estimation system adapted for infants,
we extracted pose estimates from video recordings
of 85 infants in the YouTube cohort and the 19 infants
from the clinical sample. From this pose data, we then
extracted kinematic features for each infant, then predicted
their neuromotor risk using a Naïve Bayes classifier.

When evaluating the pose-estimation model, we used three
performance metrics. We computed the root-mean-squared
error (RMSE) between ground-truth data and pose estimates,
normalized by bounding-box dimensions, for landmarks that
were in both datasets. To obtain the RMSE, we computed
the distance between each landmark detected by the algorithm
and label from the ground-truth data, in x coordinates and y
coordinates. To account for differences in scale, we normalized
x and y distances by the width and height of the ground-truth
bounding box around the infant. Finally, we computed the
root-mean square of these individual errors from all labelled
images, leading to one error score for the entire test dataset.
We also evaluated precision, that is, the proportion of total
pose estimates that were present in the ground-truth dataset,
and the recall, that is, the proportion of ground-truth labels
that were found by the pose estimator. These three metrics
allowed us to evaluate the pose-estimation model before and
after domain adaptation.

Pose-estimation data contained missing data, outliers in the
form of false positive detections and additional noise around
body landmarks. To obtain clean signals, we preprocessed
time series data from each body landmark (Figure 3). We first
removed missing data by applying linear interpolation to the
raw time series for each body landmark. We then removed
outliers by using a rolling-median filter with a smoothing
window of 1 second. In order to obtain smooth signals,
we then performed smoothing using a rolling-mean filter
with a smoothing window of 1 second. Outlier removal and
smoothing provided a cleaner signal for the extraction of
kinematic variables.

To compute infant kinematics from YouTube data,
we needed to compensate for camera properties. Our goal is
to have a tool that compensates for some camera movements,
because we want our pipeline to work on videos recorded
on a mobile phone outside of a laboratory setting. Movement
signals extracted from videos contain a combination of infant
movement and camera movement. For example, a moving
camera with respect to a non-moving infant would produce
a movement signal. Also, a short distance between the camera
and infant would produce greater movement signals than when
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Fig. 3. Preprocessing of pose data. We took raw pose data for whole
videos as input (frame coordinates of body landmarks). To filter the pose
data, we interpolated the raw signal to replace missing data, then applied
a rolling-median filter to remove outliers and finally, used a rolling-mean
filter. This provided a smooth signal from which to compute derivatives.
To ensure that we could compare infants recorded under different
conditions (camera angles, video resolution, etc.), we then rotated and
normalized body landmark coordinates in each frame. We rotated the
upper-body landmarks with respect to the center of the shoulders and
we rotated the lower-body landmarks with respect to the center of
the hips. Next, we normalized the landmark coordinates within each
frame, by subtracting a reference landmark (the neck) and dividing by
a reference distance (the trunk length). Finally, based on pre-processed
signals, we computed kinematic variables from selected body landmark
coordinates and joint angles (position or angle (y), velocity, acceleration).

further away. To compensate for these differences, we first
extracted 2-D joint angles from video frames, which are invari-
ant to the size of the infant in the frame, and the infant’s ori-
entation in the frame (i.e. landscape, portrait). Second, we also
computed landmark positions, rotated so that all infants from
all frames were aligned (Figure 3). We rotated the upper-body
landmarks relative to the angle of the left and right shoulders
with respect to the midpoint between the shoulders. We rotated
the lower-body landmarks relative to the angle of the left
and right hip joints with respect to the midpoint between the
hip joints. We then normalized landmark coordinates within
each frame (Figure 3). We computed distance from a reference
landmark (the neck) and divided by a reference distance on the
body (trunk length). Measuring movement in body-centered
coordinates allowed us to compensate for the effects of camera
movement in YouTube videos. Our preprocessing methods
compensate for camera angles of 0.004 radians median (range
0 to 0.04) and camera distance of 0.003 median in torso length
units (range 0 to 0.125).

Our predictions of infant risk depended on kinematic vari-
ables. From each time series of body-landmark positions,
we computed the velocity and acceleration at each time inter-
val. Time-series data extracted from pose estimates provided
data for computing kinematic features.

We selected a simple set of features based on movement of
the arms and legs computed from knee angles, elbow angles,
ankle positions, and wrist positions. Our normalization of
pose estimates prevented us from examining movement of the

shoulders and hips, so we did not include these as kinematic
variables. In future, this could be solved by using a fixed
camera for all recordings, which would allow us to attribute
all recorded movement to the infant and remove the need
for normalization. Where possible we computed the median
and interquartile range (IQR), to avoid the effects of out-
liers. We chose features that represented postural information
(absolute position and angle), variability of posture (variability
of position and angle), velocity of movement (median absolute
velocity), variability of movement (variability of velocity and
acceleration), complexity (positional and angular entropy), and
left-right symmetry of movement (left-right cross correlation
of position and angle). As features of each extremity (left and
right wrists and ankles), we included the median position in x
and y coordinates (units of trunk length, l), IQR of position in
x and y coordinates (l), median absolute velocity in x and
y coordinates (units of trunk length per second, l/s), IQR
of velocity in x and y coordinates (l/s), IQR of acceleration
in x and y coordinates (l/s2), left-right cross-correlation of
position, and positional entropy. As features of each joint angle
(left and right elbows, wrists, knees and ankles), we included
the angular mean (degrees, deg.), angular standard deviation
(deg.), median angular velocity (deg./s), IQR angular velocity
(deg./s), IQR angular acceleration (deg./s2), angular cross-
correlation, and angular entropy. Entropy is defined as the
negative sum of probabilities each multiplied by their loga-
rithm. Generally, a peaked distribution is associated with low
entropy and low complexity, while a broader distribution has
high entropy or complexity.

To reduce the number of features, we averaged feature
values across the left and right sides of the body, where
applicable. Having established a basic set of features, we pre-
registered our feature set and the algorithm to calculate
Bayesian Surprise (https://osf.io/hv7tm/). These kinematic fea-
tures provided basic descriptors of infant movement on which
to make predictions.

Existing assessments rely on clinicians visually identify-
ing at-risk infants whose movements differ from the normal
population. We aimed to replicate this form of assessment
using quantification of multiple kinematic features from videos
and a normative database which tells us what healthy infant
movement looks like. In this approach, infants who devi-
ate from the healthy reference population are identified as
being at-risk. We estimated the probability of each infant
belonging to the healthy reference population, represented by
the YouTube cohort in this case, who are presumed to be
healthy. We adopted the naïve Bayes approach, previously
used for clinical assessments of walking performance [26].
Under the assumption of normally-distributed features and
feature independence, the joint probability of features over the
reference population is:

p
(

x1, . . . , xn | μi,H , σ 2
i,H

)
=

∏n

i=1

1√
2πσ 2

i,H

e

−(xi−μi,H )2

σ2
i,H (1)

where xi indicates the i -th feature value for a subject, and
μi,H and σ 2

i,H are, respectively, the mean and variance of that
feature across the reference subjects.
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The negative natural logarithm gives the Naïve Gaussian
Bayesian Surprise [48]:

� = −
n∑

i=1

(
1

2
ln

(
2πσ 2

i,H

)
+ (xi − μi,H )2

2σ 2
i,H

)
(2)

The metric given by (2) can be interpreted as related to the
log probability of a subject being part of the reference pop-
ulation. The Bayesian Surprise was normalized with respect
to the reference population. Infants were compared within age
brackets computed based on corrected age (less than 10 weeks,
10 weeks or older). We chose 10 weeks as a threshold so
that there was sufficient data within each age bracket to serve
as a normative group for comparison (47 infants less than
10 weeks, 38 infants older than 10 weeks). This provided a
standard score: subjects who were more than two standard
deviations from the mean would be classed as at-risk. As we do
not use any parameters to weight our pre-registered features,
we do not need to cross-validate for our Bayesian surprise
calculation. Our approach to risk assessment classified infants
based on how different their movement was to that of the
reference population.

To further explore how combinations of movement features
relate to clinically-assessed risk, we applied matrix decompo-
sition to our set of 38 movement features from 104 infants.
Matrix decomposition provides a way of describing infants’
movement in terms of a lower number of features which are
aggregates of the original set of 38 movement features. This
method also allows us to summarize relationships between
movement features. Singular value decomposition (SVD) is
a matrix-decomposition method that finds ‘latent variables’
which describe important sources of variance in the data. Each
latent variable is a linear combination of the original set of
movement features, with a singular value that tells us how
much of the variance it explains. For example, one latent
variable could have a high weight for velocity and acceleration,
and a low weight for symmetry and entropy; a second latent
variable could have a high weight for symmetry and entropy,
and a low weight for the remaining features, and so on.
These groupings of features into one latent variable tell us that
they vary together. Each infant has one score for each of the
latent variables. For example, an infant with high velocity and
acceleration, and moderate symmetry and entropy would have
a high score for the first latent variable and a moderate score
for the second latent variable. Thus, matrix decomposition
allows description of infants’ movement in terms of a lower
number of features.

More formally, applied to our dataset of M infants by N
movement features (AM×N ), SVD approximates this matrix
by the product of three matrices: A = U�V T . The columns
of the left matrix, U , span the column space of matrix A that
characterizes the infants, later described as singular vectors.
The columns of the right matrix, V , span the row space
of matrix A that characterizes the movement features, later
described as singular vector weights. � contains singular
values that describe how important each latent variable is.
We first normalized columns of matrix A, by subtracting the
mean and dividing by the standard deviation. We then applied

SVD. We examined the singular vectors of U as a function of
risk and we examined how the original movement features are
weighted in latent variables by examining singular vectors of
V . SVD allows examination of infants and movement features
in terms of a set of latent variables that describe the sources
of variance in the dataset.

III. RESULTS

We developed a system to assess infants’ neuromotor risk
based on kinematic variables extracted from 2-D videos.
We adapted an existing adult pose-estimation algorithm to
detect infant movements. Then, we computed kinematic data
extracted from clinically assessed infants and a normative
infant movement database we curated from YouTube. Finally,
we combined these features into a single estimate of risk for
each infant.

We required a system that could reliably extract the
pose of infants from videos. We therefore adapted an exist-
ing deep-learning based pose-estimation algorithm, Open-
Pose [25], for infants. We performed domain adaptation for
infant pose estimation by updating the network’s weights
with infant images and body landmark labels as input.
Domain adaptation led to improved pose estimation in infants.
We observe a lower distance between ground-truth labels
and pose estimates after domain adaptation, as shown by
the RMSE in bounding-box units. RMSE of 0.05 before
domain adaptation decreases to 0.02 after domain adaptation
(Figure 4A,B). We also observe an increase in precision
from 0.89 before domain adaptation to 0.92 after domain
adaptation (Figure 4C,D) and an increase in recall from 0.76
before domain adaptation to 0.94 after domain adaptation
(Figure 4E,F). Therefore, through domain adaptation with
labelled images of infants, we improved the performance
of the pose-estimation model. This allowed us to extract
skeletal information on each infant and track the positions of
body landmarks (Figure 4 G,H). The adapted pose estimator
allowed us to extract movement trajectories from videos of
infants moving.

We compared the movement of each infant from the clinical
cohort with the movement extracted from the reference-group
sample based on 38 features that described posture, velocity,
acceleration, left-right symmetry, and complexity (see meth-
ods, all pre-registered). Inspection of kinematic features from
different risk populations reveals some subtle deviations from
the reference sample based on neuromotor risk (Figure 5).
While each of these features may not be strongly indicative
of an infant’s neuromotor risk when considered individually,
an estimate which pools across features is likely to provide
more robust predictions of risk.

Our approach to assessing neuromotor risk allowed us
to combine many features into one estimate. We computed
the Bayesian Surprise for each individual infant. When fea-
tures are combined into one estimate of risk, the normalized
Bayesian Surprise increases with clinician-assessed risk; Low
Risk: mean z = −1.62, SD = 1.18; Moderate Risk: mean
z = -1.68, SD = 1.34; and High Risk: z = -2.94, SD=1.43
(Figure 6). The proportion of infants classed as at-risk varies
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Fig. 4. Pose-estimation model performance and example outputs.
(A) Scatterplot of the RMSE of the adapted pose-estimation model as a
function of the RMSE of the OpenPose model before domain adaptation.
Points show the RMSE for individual images in bounding-box units. In A,
C and E, the dotted line shows the diagonal, where performance before
and after domain adaptation are equal. (B) Distribution of the difference in
model error before and after domain adaptation. For each model, a single
RMSE score was computed from errors between individual landmarks
and labels averaged across the whole test dataset. RMSE (Adapted)
– RMSE (Original) is shown by the red dotted line. Solid black line
shows a difference of 0, in B, D and F. The negative RMSE difference
demonstrates improvement after domain adaptation. (C) Scatterplot of
the precision of the adapted pose-estimation model as a function of
the precision before domain adaptation. Points show the precision for
individual images. (D) Distribution of the difference in precision before
and after domain adaptation. Precision (Adapted) – Precision (Original)
is shown by the red dotted line. (E) Scatterplot of the recall of the
adapted pose-estimation model as a function of the recall before domain
adaptation. Points show the recall for individual images. (F) Distrib-
ution of the difference in recall before and after domain adaptation.
Recall (Adapted) – Recall (Original) is shown by the red dotted line.
(G) Example of OpenPose outputs extracted from a video of an infant
using our adapted pose-estimation system. (H) Image y-coordinates of
the extremities for the same infant as in (G).

with participant group (Reference: P(Risk) = 0.07, Low Risk:
P(risk) = 0.40, Moderate Risk: P(Risk) = 0.33, High Risk:
P(Risk) = 0.8). A Kruskal-Wallis test showed a significant
association between participant group and the Bayesian Sur-
prise score (χ2 (3) = 29.92, p < 0.0001). We found significant
differences between the reference population and the clinical
risk groups using the Mann Whitney U test (Reference, Low
Risk: U = 49, p < 0.05; Reference, Moderate Risk: U =
108, p < 0.005; Reference, High Risk: U = 9, p < 0.005,
Bonferroni-corrected p-values).

Diferences among clinical risk groups were non-significant
(Low Risk, Moderate Risk: U = 20, p=0.99; Moderate Risk,
High Risk: U = 6, p=0.63; Low Risk, High Risk: U = 12,

Fig. 5. Infant movement features. Kinematic features of the reference
sample (blue), low-risk infants (orange), moderate-risk infants (green),
high-risk infants (red) as a function of age in corrected weeks. Features
are shown for the wrists: median absolute position (l), IQR of position
(l), median velocity (l/s), IQR of velocity (l/s), IQR of acceleration (l/s2�,
left-right cross-correlation of position and entropy of position. Visual-
ization of other features are provided as Supporting Information at the
figshare link.

p=0.54, Bonferroni-corrected p-values). These results show
differences between at-risk infants and our reference popula-
tion based on a set of simple kinematic features, suggesting
that it may be possible to predict clinician’s assessments
of infantile neuromotor risk through statistical comparison
relative to a healthy reference population.

We explored how combinations of our set of 38 movement
features relate to neuromotor risk. SVD finds linear combina-
tions of movement features, or latent variables, that summarize
the movement feature data using matrix factorization. In our
data, the three most important latent variables account for
37%, 15%, and 12% of the variance respectively (Figure 7).
We did not include other variables, since they accounted for
small proportions of variance (<10%). The first latent variable
mainly discriminates between the reference group and infants
recorded at the lab, with at-risk infants being more extreme
along this variable (Figure 7A). Well-represented movement
features include median and variability of velocity, and
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Fig. 6. Normalized Bayesian Surprise as a function of subject group.
The normalized Bayesian Surprise (z) is shown for the reference infant
population, and at-risk infants recorded at the lab evaluated by clinicians
using the BINS score (Low Risk, Moderate Risk, and High Risk).
More negative scores indicate a smaller probability of belonging to the
reference population, or higher risk. Points show individual data for each
subject group. Individual data is overlaid with the mean for each group
(error bars = 95% confidence intervals (CI)).

variability of acceleration (Figure 7B). The second latent vari-
able discriminates between reference, low-medium risk infants
and high-risk infants, with high-risk infants having more
extreme values along this variable (Figure 7C). Variability of
position, positional entropy, symmetry (cross-correlation), and
postural variables from the lower body (mean knee angle,
median ankle position) are well-represented (Figure 7D).
Therefore, in our data, high-risk infants are atypical for this
combination of features. The third latent variable does not
show a clear pattern relative to the infant group (Figure 7E),
but may relate to movement of the upper body relative to
the lower body, as most positive weights describe lower body
movement and most negative weights describe upper body
movement (Figure 7F). Thus, our exploratory SVD analysis
suggests that at-risk infants show different distributions of
velocity and acceleration compared to the reference popu-
lation. Also, high-risk infants in particular may have more
extreme posture, variability of posture, and symmetry. These
results show that at-risk infants in our sample have different
movement patterns to the normal population, which can be
described in terms of combinations of individual movement
features. This analysis allows us to describe important sources
of variance in the movement feature data and to explore
the importance of combinations of movement features in
determining risk assessments.

IV. DISCUSSION

We have developed a framework to identify infants at risk
of neuromotor disorder based on video data. Our approach
was to compare infants assessed in the laboratory at different
levels of neuromotor risk with a normative dataset of infant
movement extracted from online videos. We successfully
adapted an existing pose-estimation system to perform motion
capture on 2-D videos. Using pose estimation, we extracted
kinematic features from videos. We found that the naïve
Bayesian Surprise measure of risk, which pooled across fea-
tures, varies across participant groups. We examined the main
latent variables that describe the data, with the finding that
velocity and acceleration distinguish infants from the reference

Fig. 7. SVD analysis of movement feature data in terms of the three
most important latent variables. (A), (C), and (E) show values from
singular vectors, which describe the infants in terms of latent variables.
(B), (D), and (F) show the weighting of movement features in each
latent variable. (A) Mean eccentricity (error bars = 95% CI) along the
first singular vector (SV1 squared), as a function of participant group.
(B) Weighting of movement features in SV1 ranked in descending
order. (C) Mean SV2 squared (error bars = 95% CI) as a function of
neuromotor risk. (D) The weighting of movement features in SV2 ranked
in descending order. (E) Mean SV3 squared (error bars = 95% CI) as
a function of neuromotor risk. (F) Weighting of movement features in
SV3 ranked in descending order.

population with at-risk infants, and that high-risk infants
differ from reference in their posture, postural variability, and
symmetry. Combinations of movement features are predictive
of neuromotor risk.

Previous work has addressed kinematic markers of dis-
ordered infantile movement, with the finding that features
of velocity and acceleration including skewness of velocity,
maximum acceleration, and minimum speed predict infan-
tile movement disorders [14], [15]. Other work has shown
that infants with disordered movement show greater stereo-
typy [17], [18]. Our SVD analysis showed that at-risk infants
may have different velocity and acceleration distributions rela-
tive to a reference sample of healthy infants, and that high-risk
infants in particular show different patterns of posture, postural
variability, symmetry of movement, and complexity. Our find-
ings on the features that predict risk assessments show some
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similarity with previous observations with roles for velocity
and acceleration, as well as complexity and symmetry. In order
to confirm our findings, it will be important to examine the
kinematic markers of disordered movement using large clinical
datasets.

Previous work on infant movement used measurements
capable of extracting fine movement information, like
accelerometers, motion capture using depth cameras, and optic
flow from videos [14], [15], [22]. This allowed examination of
the jerkiness of movement, previously found to be predictive
of movement disorder [14], [15]. Pose estimation applied to
low-quality videos currently does not afford the high precision
needed to compute higher derivatives of movement trajec-
tories. Here, because of the presence of outliers and noise
in our pose-estimate data, we applied smoothing to the data
which removed its fine detail. In future work, improvements
in pose estimation and high-quality video datasets will make it
possible to extract fine movement detail from pose estimates.

Another concern about our work here is the small number
of subjects in the clinical group. Due to a range of constraints
we were only able to analyze data from 19 subjects. We do
find a significant difference of those subjects to the normative
population. Features including velocity, acceleration and their
variability discriminate between at-risk and reference infants.
However, we find a significant difference even when compar-
ing the normative population to the low-risk infants in the
clinical cohort. Our SVD-based analysis (Figure 7) provides
some insights into why we are seeing these differences. While
our analysis was exactly as we had planned and preregistered,
we cannot avoid the confound that other differences between
the YouTube and clinical groups gave rise to the difference
we observed. Also, while we do not find significant differences
among the three clinical groups (low, moderate, and high risk),
this could be due to the small number of infants in each
individual risk category. Future work will need to analyze
larger datasets, weigh the most predictive features, and correct
for sources of variability which do not directly correspond to
neuromotor risk. As such, the main contribution of our study
is the provision of a pipeline and a set of computational tools
that show promise on the small number of infants assessed
here. Our pipeline should be used in future studies with
larger populations, longitudinal follow-up, and a variety of
neuromotor impairments to ascertain clinical efficacy.

In this work, we compare the movements of a reference
YouTube infant dataset to that of infant movements observed
in a clinical setting. As seen in Figure 5, the age ranges of
these two populations are not exactly overlapping. To explore
any age effect in our study, we recalculated the Bayesian
Surprise scores so that each infant is only compared to
infants who are within 10 weeks of age difference from
itself. This resulted in 5 infants (2 low risk, 3 moderate risk)
from the clinical population being omitted in this post-hoc
calculation, not having any reference YouTube infants within
a 10 week age range available for comparison. With this
age-constrained comparison, we found significant difference
between the reference population and the moderate and high
risk clinical groups, but not with the low risk group using
the Mann Whitney U test (Reference, Low Risk: U = 30,

Fig. 8. Age-constrained Normalized Bayesian Surprise as a function
of subject group. The normalized Bayesian Surprise (z) is shown for
the reference infant population, and at-risk infants recorded at the lab
evaluated by clinicians using the BINS score (Low Risk, Moderate Risk,
and High Risk). In contrast to Figure 6, the comparison here for each
infant is done only to infants who are within 10 weeks in age to explore
any age effects on the results. More negative scores indicate a smaller
probability of belonging to the reference population, or higher risk.
Points show individual data for each subject group. Individual data is
overlaid with the mean for each group (error bars = 95% confidence
intervals (CI)).

p = 0.07; Reference, Moderate Risk: U = 92, p<0.05;
Reference, High Risk: U = 11, p<0.005, Bonferroni-corrected
p values). Thus, the moderate and high risk groups differed
significantly, but the low risk group did not differ significantly
from the other groups. The slight changes in results with this
age-constrained recalculation of the Bayesian Surprise should
be interpreted carefully as they may be dominated by the
omission of 5 infants from an already small clinical population.

In this work, we provide a domain-adapted version of
OpenPose, retrained on ground truth labels annotated manually
on infant videos. As a few frames from each video are included
in our training data, this work establishes within-video gen-
eralization: this drastically decreases the amount of manual
annotation needed per video.

The pipeline we provide here uses 2-D approximation
of 3-D movement from videos as a way to detect infant
neuromotor risk. This approximation provides a useful proxy
for diagnostic purposes for comparing an impaired population
to a healthy one using easily available videos. Similar use
of 2-D approximation of 3-D biological data is used in
other clinical diagnoses such as X-ray imaging. However,
before clinical interpretation of the 2-D movements into 3-
D rehabilitation measures, there is a need for validation of
pose estimation against 3-D sensor-based measurements. Past
work has compared OpenPose estimates on adult movements
to motion capture and reported mean absolute errors of less
than 20 mm in ∼50% data and less than 30 mm in 80% of
data [47]. In the future, other studies could compare the pose
estimates obtained from our pipeline on infant movements
to 3-D motion capture to provide a better basis for clinical
interpretability of the features obtained.

The method developed here depends on outputs from a
computer vision algorithm. As such it depends strongly on the
visibility of the infant. As well as limited ability to measure
high frequency movements, the success of pose estimation
can be limited by other factors: occlusions, orientation of the
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Fig. 9. Visualizing performance of the pose estimation model as a
function of video resolution. In our data, we find that the performance
of the domain-adapted pose estimation improves with video resolution.
In this figure, we show how the RMSE, recall, and precision of the
detected poses improve as a function of number of pixels in the original
videos (video resolution). The figure above shows the mean and the 95%
confidence interval of the mean.

infant, orientation of the camera, and camera movements [44].
To explore how our domain-adapted OpenPose model per-
forms as a function of video quality, we visualized the RMSE,
recall, and precision as a function of video resolution. As seen
in Figure 9, and as is to be expected, the quality of pose
estimation improves with video quality. Although the state-
of-the-art computer vision algorithms can successfully extract
body pose, they are less successful when small amounts of
occlusion are present [49]. Because of this we did not include
videos with occlusion by external objects or where the camera
angle introduces occlusion of the body on itself (e.g. profile
view). However, it can be argued that such recordings may
not be ideal for clinical evaluations of infant movement either
and thus equally apply to existing clinical tests. Having a clear
view of the infant is a reasonable requirement for a diagnostic
tool that depends on computer vision, but it does limit the
types of videos that can be used for assessment. We argue that
this is inherent to the approach at this time and that computer
vision-based pose estimation tools still have a significant role
to play in movement-based diagnostics.

In this work, we provided methods to quantify and automate
infantile neuromotor risk assessments. This system could
benefit from several additions. Firstly, future studies should
use larger datasets to explore the optimal weighting between
movement features that have the best ability to predict risk.
Due to the limited dataset size here, we adhere to our
pre-registered set of features without optimally weighting
them. Secondly, infants move differently depending on the
time of day and their emotional state [34]. For an automated
movement test with high enough accuracy to be used, it will
be important to take such variables into account. It is also
important to take into account developmental changes in infant
movement [35]. Development is variable across infants: an
infant can be delayed in their motor development without hav-
ing a neuromotor disorder [36]. Therefore, an algorithm that
jointly infers an infant’s developmental age and neuromotor
risk promises to perform better than one that infers risk alone.
Neuromotor states can change with time and future studies
can explore time-dependence of neuromotor risk by adding
features that capture time-dependence. Moreover, the YouTube
videos we analyze here are relatively short and it is unclear
how the video length may affect risk assessment. In future
studies, longer videos could be used to explore the effect

of video length on risk assessment. The incorporation of
several variables will be needed for high-accuracy predictions
of neuromotor risk.

Our approach to infantile neuromotor risk assessments has
made novel contributions. For our normative database, we col-
lected movement data from close to 100 infants using mark-
erless tracking applied to videos. Use of a normative database
for comparison increases the robustness of risk assessments.
Secondly, we used unsupervised methods to assess risk and to
examine important movement features. The Bayesian Surprise
metric compared movement of each at-risk infant to the
normative database, weighting each feature by its uncertainty.
Our SVD analysis describes the main sources of variance
in the movement feature dataset. Therefore, our analysis is
unlikely to be overfit to the data.

Markerless tracking of infant movement used here provides
a number of advantages over existing clinical methods for
neuromotor risk assessment. Firstly, video-based diagnostics
will improve access to evaluations. A parent need only provide
a simple smartphone video of their infant’s movement to
receive an assessment. Secondly, behavior observed in the
laboratory and clinical setting may differ from the real-life
setting [37], [38]. Movement variables collected in natural
settings would provide a more ecologically-valid assessment,
thus providing more meaningful predictions. Markerless track-
ing also has the potential for quantitative understanding of
infant pathology. One of the most common movement dis-
orders is cerebral palsy, a lifelong condition due to brain
injury in infancy. Although subtypes and biomarkers have
been described, it is poorly understood in terms of its causal
determinants [39]. Markerless tracking may serve as a tool to
provide a detailed description of movement pathology across a
large population, providing better quantitative descriptions of
disease subtypes [40]–[42]. Based on large-scale quantitative
measurements of movement in different patient groups and
in typical populations, one could model how motor-control
processes differ between healthy and disordered infants [43].
Therefore, markerless tracking promises to improve accessibil-
ity to diagnostics, monitor naturalistic movements, and provide
a quantitative understanding of infant neuromotor disorders.

We have developed a method to identify infantile risk
of neuromotor disorder based on pose estimates extracted
from 2-D videos. Such a method meets the requirements of
objectiveness, as movements are assessed based on quantitative
variables; and availability, since diagnoses would no longer
require the opinion a trained specialist.

Our approach proposed here will improve as larger nor-
mative datasets are collected, and as pose-estimation algo-
rithms better suited to movement science are developed [44].
We expect that, over the next decade, movement-based diag-
nostics from pose estimates will become a viable alternative
to established tests such as the General Movements Assess-
ment [45], [46].

V. USER GUIDELINES

We provide some guidelines for best use of the pipeline,
code and data we provide along with this article. Our goal
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is that the methods provided in this article should work on
videos taken on a mobile phone. These guidelines are based
on the results included in the paper and also on the experience
of the authors from using this tool:

i To ensure high quality of pose estimates, the users
should use as high quality (frame rate and resolution)
of video as possible.

ii To ascertain across-video generalization of pose esti-
mates, maintain similarity across videos in terms of
quality, background, and infant clothing. Avoid clothing
that occludes the hands and legs (e.g. onesies).

iii If comparing movements across videos, ensuring the
camera angles are similar will result in a more appro-
priate comparison.

iv Avoid videos with excessive external occlusions. The
algorithms is less likely to detect pose in the presence
of occlusions.

v The domain-adapted OpenPose model provided here
has been retrained for supine infant movements. Some
retraining may be needed for movements in other
positions that have more self-occlusion (e.g. crawling,
rolling, etc.). We provide steps in our code for how
retraining can be performed.

vi Avoid videos with excessive camera movements to get
the best possible results. Our preprocessing measures
here deal with some small camera movements as detailed
in the methods section.

VI. SUPPLEMENTAL INFORMATION

Code and data referenced in the manuscript are provided
at https://github.com/cchamber/Infant_movement_assessment/
and https://doi.org/10.6084/m9.figshare.8161430
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