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An important challenge in segmenting real-world biomedical imaging data is the
presence of multiple disease processes within individual subjects. Most adults above
age 60 exhibit a variable degree of small vessel ischemic disease, as well as chronic
infarcts, which will manifest as white matter hyperintensities (WMH) on brain MRIs.
Subjects diagnosed with gliomas will also typically exhibit some degree of abnormal
T2 signal due to WMH, rather than just due to tumor. We sought to develop a fully
automated algorithm to distinguish and quantify these distinct disease processes within
individual subjects’ brain MRIs. To address this multi-disease problem, we trained a
3D U-Net to distinguish between abnormal signal arising from tumors vs. WMH in
the 3D multi-parametric MRI (mpMRI, i.e., native T1-weighted, T1-post-contrast, T2,
T2-FLAIR) scans of the International Brain Tumor Segmentation (BraTS) 2018 dataset
(ntraining = 285, nvalidation = 66). Our trained neuroradiologist manually annotated WMH
on the BraTS training subjects, finding that 69% of subjects had WMH. Our 3D U-Net
model had a 4-channel 3D input patch (80 × 80 × 80) from mpMRI, four encoding and
decoding layers, and an output of either four [background, active tumor (AT), necrotic
core (NCR), peritumoral edematous/infiltrated tissue (ED)] or five classes (adding WMH
as the fifth class). For both the four- and five-class output models, the median Dice
for whole tumor (WT) extent (i.e., union of AT, ED, NCR) was 0.92 in both training
and validation sets. Notably, the five-class model achieved significantly (p = 0.002)
lower/better Hausdorff distances for WT extent in the training subjects. There was
strong positive correlation between manually segmented and predicted volumes for
WT (r = 0.96) and WMH (r = 0.89). Larger lesion volumes were positively correlated
with higher/better Dice scores for WT (r = 0.33), WMH (r = 0.34), and across all
lesions (r = 0.89) on a log(10) transformed scale. While the median Dice for WMH
was 0.42 across training subjects with WMH, the median Dice was 0.62 for those with
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at least 5 cm3 of WMH. We anticipate the development of computational algorithms
that are able to model multiple diseases within a single subject will be a critical step
toward translating and integrating artificial intelligence systems into the heterogeneous
real-world clinical workflow.

Keywords: segmentation, glioblastoma, convolutional neural network, white matter hyperintensities, deep
learning, radiology, multi-disease classification

INTRODUCTION

A significant challenge in the deployment of advanced
computational methods into typical clinical workflows is
the vast heterogeneity of disease processes, which are present
both between individuals (inter-subject heterogeneity) and
within individuals (intra-subject heterogeneity). Most adults
over the age of 60 have a variable degree of abnormal signal
on brain MRIs due to age-related changes manifesting as white
matter hyperintensities (WMH), which are typically secondary
to small vessel ischemic disease (SVID) and chronic infarcts that
can be found in subjects with vascular risk factors and clinical
histories of stroke and dementia (Wardlaw et al., 2015). These
lesions can confound automated detection and segmentation
of other disease processes, including brain tumors, which also
result in abnormal signal in T2-weighted (T2) and T2 Fluid-
attenuated inversion recovery (T2-FLAIR) MRI scans secondary
to neoplastic processes and associated edema/inflammation. We
sought to address this challenge of intra-individual heterogeneity
by leveraging (i) the dataset of the International Multimodal
Brain Tumor Segmentation (BraTS) 2018 challenge (Menze
et al., 2015; Bakas et al., 2017b, 2019) (ii) expert radiologist
expertise, and (iii) three-dimensional (3D) convolutional neural
networks (CNNs).

Advances in the field of segmentation and radiomics within
neuro-oncology have been supported by data made available
through The Cancer Imaging Archive (TCIA; Clark et al., 2013).
Since 2012, the BraTS challenge has further curated TCIA
glioma multi-parametric MRI (mpMRI) scans, segmentation
of tumor sub-regions, and survival data in a public dataset
and sponsored a yearly challenge to improve performance of
automated segmentation and prognostication methods (Menze
et al., 2015; Bakas et al., 2017b, 2019). Similar to BraTS, there
have been large efforts for improving automatic segmentation
of WMH (Griffanti et al., 2016; Habes et al., 2016), which
include the MICCAI 2017 WMH competition (Li et al., 2018;
Kuijf et al., 2019), as well as stroke lesions, through the
Ischemic Stroke Lesion Segmentation Challenge (ISLES; Winzeck
et al., 2018). Deep learning (DL) approaches for biomedical
image segmentation are now established as superior to the
previous generation of atlas-based and hand-engineered feature
approaches (Fletcher-Heath et al., 2001; Gooya et al., 2012), as
demonstrated by their performance in recent image segmentation
challenges (Chang, 2017; Kamnitsas et al., 2017; Li et al., 2018;
Bakas et al., 2019; Myronenko, 2019).

Deep learning relies on hierarchically organized layers to
process increasingly complex intermediate feature maps and
utilizes the gradient of the error in predictions with regard to

the units of each layer to update model weights, known as “back-
propagation.” In visual tasks, this allows for the identification of
lower- and intermediate-level image information (feature maps)
to maximize classification performance based on annotated
datasets (LeCun et al., 2015; Chartrand et al., 2017; Hassabis
et al., 2017). Typically, CNNs, a class of feed-forward neural
networks, have been used for image-based problems, achieving
super-human performance in the ImageNet challenge (Deng
et al., 2009. Krizhevsky et al., 2012). The U-Net architecture
(Ronneberger et al., 2015; Cicek et al., 2016; Milletari et al.,
2016) describes a CNN with an encoding convolutional arm and
corresponding decoding [de]convolutional arm has been shown
to be particularly useful for 3D biomedical image segmentation
through its semantic- and voxel-wise approach, such as for
segmentation of abnormal T2-FLAIR signal across a range of
diseases (Duong et al., 2019).

Several prior machine learning approaches have been used to
model inter-subject disease heterogeneity, such as distinguishing
on an individual subject basis between primary CNS lymphoma
and glioblastoma (Wang et al., 2011), or between different types
of brain metastases (Kniep et al., 2018). There is evidence that
these approaches may be superior to human radiologists (Suh
et al., 2018), yet little work has been done to address intra-subject
lesion heterogeneity. Notably, one recent study used CNNs to
distinguish between WMH due to SVID versus stroke, finding
that training a CNN to explicitly distinguish between these
diseases allowed for improved correlation between SVID burden
and relevant clinical variables (Guerrero et al., 2018). Although
a large body of work has detailed methodological approaches
to improve segmentation methods for brain tumors, to the best
of our knowledge no prior studies have addressed intra-subject
disease heterogeneity in the BraTS dataset.

Although the task of distinguishing between different diseases
within an individual is typically performed subconsciously by
humans, distinguishing between different diseases could be
challenging for an automated system if it were not specifically
designed and trained to perform such a task. When provided
with enough labeled training data, image-based machine learning
methods have shown success in identifying patterns that are
imperceptible to humans. These include GBM subtypes related
to specific genetic mutations (i.e., radiogenomics; Bakas et al.,
2017a; Korfiatis et al., 2017; Akbari et al., 2018; Chang et al.,
2018; Rathore et al., 2018), or imaging subtypes that are
predictive of clinical outcomes (Rathore et al., 2018). Therefore,
we sought to train a 3D U-Net model to distinguish between
abnormal radiographic signals arising from brain glioma versus
WMH in individual subjects, in the mpMRI data of the BraTS
2018 challenge. We hypothesized that this would (1) allow
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for automatic differentiation of different disease processes, and
(2) improve overall accuracy of segmentation of brain tumor
extent of disease, particularly in subjects with a large amount of
abnormal signal due to WMH.

MATERIALS AND METHODS

Data
We utilized the publicly available data of the BraTS 2018
challenge that describe a multi-institutional collection of pre-
operative mpMRI brain scans of 351 subjects (ntraining = 285,
and nvalidation = 66) diagnosed with high-grade (glioblastoma)
and lower-grade gliomas. The mpMRI scans comprise native
T1-weighted (T1), post-contrast T1-weighted (T1PC), T2, and
T2-FLAIR scans. Pre-processing of the provided images included
re-orientation to LPS (left-posterior-superior) coordinate system,
co-registration to the same T1 anatomic template (Rohlfing
et al., 2010), resampling to isotropic 1 mm3 voxel resolution and
skull-stripping as detailed in Bakas et al., 2019. Manual expert
segmentation of the BraTS dataset delineated three tumor sub-
regions: (1) Necrotic core (NCR), (2) active tumor (enhancing
tissue; AT), and (3) peritumoral edematous/infiltrated tissue
(ED). The whole tumor extent (WT) was considered the union
of all these three classes.

Manual Annotation of WMH
In order to define the new tissue class of abnormal signal relating
to WMH in the BraTS training subjects, a neuroradiologist (JR;
neuroradiology fellow with extensive segmentation experience)
defined manually segmentation masks of WMH using ITK-SNAP
(Yushkevich et al., 2006). WMH were considered to be abnormal
signal due to SVID, chronic infarcts, and/or any periventricular
abnormal signal contralateral to the tumor. Examples of these
new two class segmentations of the BraTS 2018 dataset are shown
in Figure 1.

U-Net Architecture
We adapted the 3D U-Net architecture (Cicek et al., 2016;
Milletari et al., 2016) for voxelwise image segmentation.

Our encoder-decoder type fully convolutional deep neural
network consists of (1) an encoder limb (with successive
blocks of convolution and downsampling encoding progressively
deeper/higher-order spatial features), (2) a decoder limb (with
a set of blocks – symmetric to those of the encoder limb – of
upsampling and convolution, eventually mapping this encoded
feature set back onto the input space), and (3) an introduced
novel so-called skip connections (whereby outputs of encoding
layers are concatenated with inputs to corresponding decoding
layers) in order to improve spatial localization over previous
generations of fully convolutional networks (3D Res-U-Net;
Milletari et al., 2016).

Our adaptations from the prototypical U-Net architecture
included: 4 channel input data (T1, T1PC, T2, T2-FLAIR),
4 or 5 class output data (background = 0, NCR = 1,
ED = 2, AT = 4, WMH = 3), with 3D convolutions, and
no voxelwise weighting of input label masks. Training patch
size was 80 × 80 × 80 voxels (mm), and inference was
conducted in the whole image. We zero padded the provided
images to increase its size from 240 × 240 × 155 voxels to
240 × 240 × 160 voxels, and hence being divisible by the
training input patch size (80 × 80 × 80). Training patch
centerpoints were randomly sampled from within the lesion
(90%) or from within the whole brain (10%). Train-time data
augmentation was performed with random left-right flipping,
and constrained affine warps (maximum rotation 45◦, maximum
scale ±25%, maximum shear ±0.1). Core convolutional blocks
included two nodes each of 3D convolution (3 × 3 × 3 kernel,
stride = 1, zero padded), rectified linear unit activation, and
batch normalization. Four encoding/decoding levels were used,
with 32 convolutional filters (channels) in the base/outermost
level, and channel number increased by a factor of two at each
level (Figure 2).

The network was trained on an NVIDIA Titan Xp
GPU (12GB), using the Xavier initialization scheme, Adam
optimization algorithm (Kingma and Lei Ba, 2015; initial
learning rate 1e−4), and 2nd order polynomial learning rate
decay over 600 epochs. Training time was approximately
4.5 h. 10-fold internal cross validation on the training set was
used for hyperparameter optimization and intrinsic estimation

FIGURE 1 | Revised BraTS 2018 training segmentations including annotations of WMH. (A) Sample revised segmentation of abnormal signal due to WT (red) and
WMH (green) on T2-FLAIR, T2, T1, and T1PC axial slices. (B) Three additional example revised segmentation maps for tumor and WMH overlaid on T2-FLAIR axial
slices.
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FIGURE 2 | Multiclass input and multiclass output U-Net schematic. Our U-Net has 4-channel input accepting 3D patches from mpMRI with four encoding and
decoding layers, and either a four-class output (background, AT, NCR, and ED) or a five-class output (adding WMH as the fifth class).

of generalization performance during training. For inference
on the validation set, the model was retrained 10 times
independently on the entire training set (n = 285), and model
predictions were averaged.

We trained models using this architecture twice; once with the
four tissue classes originally annotated in the BraTS dataset, and
again with the manual WMH segmentations added as a fifth class.
All of the code has been made publicly available at https://github.
com/johncolby/svid_paper.

Performance Metrics
Tissue segmentation performance was evaluated with the Dice
metric (2×TP/(2×TP+ FP+ FN); TP = true positive; FP = false
positive; FN = false negative; Dice, 1945) for the tumor
segmentation in both models, as well as for WMH in the five-
class model. In addition, the 95th percentile of the Hausdorff
distance (Hausdorff95) was used as a performance evaluation
metric, to evaluate the distance between the centers of the
predicted and the expert 3D segmentations. The metrics for the
four tissue classes and the Hausdorff95 distance were measured
by submitting our segmentations to the online BraTS evaluation
portal1 (Davatzikos et al., 2018).

Further Exploration of U-Net Results
In order to further interrogate the performance of our
proposed model, we performed correlations between manually
segmented and predicted volumes for WT and WMH, as well
as Bland Altman plots to assess agreement between the two
measures of tissue volumes for both WT and WMH. For
the evaluation of WMH, we performed correlations among
the 196 cases that contained at least 100 mm3 of WMH.
To better understand what could affect performance, we
also evaluated correlations between total lesion volumes and
Dice scores.

1https://ipp.cbica.upenn.edu/

RESULTS

Manual WMH Segmentations
Of the manually revised BraTS training data (285 subjects),
we found 196 (68.8%) with at least 100 mm3 of WMH, 109
(38.4%) with at least 1000 mm3 (1 cm3) of WMH, 32 (11.2%)
with at least 5000 mm3 (5 cm3) of WMH, and 17 (5.8%) with
at least 10000 mm3 (10 cm3) of WMH. The manual WMH
segmentations have been made available for public use at https:
//github.com/johncolby/svid_paper.

Segmentation Performance
The performance metrics for the training (10-fold cross
validation) and validation subjects (final model) for each of the
tissue classes in the four- and five-class models are shown in
Table 1. We achieved a median Dice of 0.92 for WT in both the
four- and five-class models, in both the training (p = 0.52; 10-fold
cross validation) and validation datasets (p = 0.94). Segmentation
performance on AT and tumor core (the union of AT and
NCR) were also not significantly different between the four- and
five-class models. There were no significant differences between
tumor segmentation performance for high- or low-grade gliomas
in the training set (p = 0.45).

The median Hausdorff95 distance in the training data was
significantly lower (p = 0.002; two tailed t-test) in the five-
class model (3.0, interquartile range 2.2–9.0) than the traditional
four-class model (3.5, interquartile range 2.2–4.9). Example
training cases where the Hausdorff95 distance were much better
in the five-class model are shown in Figure 3 with predicted
segmentations for AT, NCR, ED, and WMH for both the four
and five-class models. However, the Hausdorff95 distance was
not significantly different in the validation data (p = 0.84).
Example validation cases with greater than 5 cm3 of WMH
are shown in Figure 4, with predicted segmentations for AT,
NCR, ED, and WMH.

We achieved a median Dice of 0.42 in the 189 subjects
with WMH of at least 100 mm3. Median Dice for WMH in
subjects with at least 1000 mm3 (1 cm3), 5000 mm3 (5 cm3)
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TABLE 1 | Performance metrics of four- and five-class models applied to the BraTS 2018 Training and Validation datasets.

Training (n = 285) Validation (n = 66)

Performance metric 4 Class model 5 Class model p value 4 Class model 5 Class Model p value

Dice (Whole Tumor) 0.92 (0.87-0.95) 0.92 (0.87-0.94) 0.52 0.92 (0.89-0.95) 0.92 (0.90-0.95) 0.94

Dice (Enhancing Tumor) 0.82 (0.68-0.88) 0.82 (0.68-0.88) 0.76 0.87 (0.82-0.91) 0.87 (0.81-0.91) 0.99

Dice (Tumor Core) 0.88 (0.75-0.93) 0.89 (0.77-0.93) 0.75 0.91 (0.81-0.95) 0.91 (0.80-0.95) 0.97

Dice (WMH) N/A 0.42 (0.25-0.55) N/A N/A N/A N/A

Hausdorff Distance (WT) 3.5 (2.2-9.0) 3.0 (2.2-4.9) 0.002 3.1 (2.0-4.5) 3 (2.0-4.4) 0.84

Dice scores are median (25th percentile – 75th percentile).

and 10000 mm3 (10 cm3) of WMH was 0.52, 0.62, and
0.67, respectively.

Correlation Between Predicted Lesion
Volumes and Manual Segmented
Volumes
Within the training dataset there was a strong correlation
between manually segmented WT volume and predicted WT
volume (Pearson r = 0.96, p < 0.0001; Figure 5A). There
was also a strong correlation between manually segmented
WMH volume and predicted WMH volume (Pearson r = 0.89,
p < 0.0001; Figure 5B). Bland-Altman plots assessing agreement
between manual and predicted volume for WT and WMH are
shown in Figures 5C,D.

FIGURE 3 | Example segmentations in training subjects with smaller (better)
Hausdorff distance metrics in the model with WMH. Axial T2-FLAIR slices of
four example training cases are shown in the first row. The ground truth
segmentations are overlaid in the second row (background, AT, NCR, and
ED). The predicted tumor segmentations overlaid from the four-class model
(background, AT, NCR, and ED) and the five-class model (background, AT,
NCR, ED, and WMH) are shown in the third and fourth rows, respectively. The
red arrows indicate multiple WMH distal to the tumor that were incorrectly
classified in the four-class model as either ED or NCR.

Correlations Between Lesion Volumes
and Dice
Within the training dataset there was a significant correlation
between manually segmented WT volumes and WT Dice scores
(Pearson r = 0.33, p < 0.0001; Figure 6A) and between
manually segmented WMH volumes and WMH Dice scores
(Pearson r = 0.34; p < 0.0001; Figure 6B). When combining
WT and WMH, there was a stronger correlation between
lesion volumes and Dice scores (Pearson r = 0.68; p < 0.0001;
Figure 6C), which was even stronger when the volumes
were transformed to a logarithmic (log(10)) scale (Pearson
r = 0.89; p < 0.0001; Figure 6D). There was no significant
relationship between WMH volume and WT Dice scores
(Pearson r =−0.05, p = 0.42).

DISCUSSION

Advanced computational methods are poised to improve
diagnostic and treatment methods for patients diagnosed with
glioma (Davatzikos et al., 2019; Rudie et al., 2019). However,
a critical challenge facing the eventual deployment of artificial

FIGURE 4 | Example predicted segmentations in validation subjects with
greater than 5 cm3 of WMH. Axial T2-FLAIR slices of four example validation
cases are shown in the first row. The predicted tumor segmentations overlaid
from the four-class model (background, AT, NCR, and ED) and the five-class
model (background, AT, NCR, ED, and WMH) are shown in the second and
third row, respectively.
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FIGURE 5 | Relationship between manually segmented volume and U-Net predicted volume. (A) Pearson correlation between manually segmented tumor volume
and U-Net predicted tumor volume. (B) Spearman ranked correlation between manually segmented WMH volume and U-Net predicted WMH volume.
(C) Bland–Altman plot for WT manually segmented volume and U-Net predicted volume. (D) Bland–Altman plot for WMH manually segmented volume and U-Net
predicted volume. The dotted lines in panels (C,D) mark the bounds of the 95% confidence interval of the bias.

intelligence systems into daily clinical practice is disease
heterogeneity within subjects. In this study, we utilized the BraTS
2018 dataset and expert-revised WMH segmentations to train
a state-of-the-art CNN to successfully distinguish and quantify
abnormal signal due to WMH as a distinct tissue class from
glioma tissue sub-regions.

We used a 3D CNN (U-Net architecture; Cicek et al., 2016;
Milletari et al., 2016) for multiclass tissue segmentation with
performance at the top 10% of the BraTS 2018 leaderboard (Bakas
et al., 2019; noting that we did not participate in the official
competition). U-Nets have been particularly adept at medical
image segmentation, due to their ability to convert feature
maps obtained during convolutions into a vector and from that
vector reconstruct a segmentation, which reduces distortion by
preserving the structural integrity.

To our knowledge this is the first study to distinguish intra-
subject lesion heterogeneity in the BraTS dataset, noting that
Guerrero et al. (2018) previously used a U-Net architecture
to distinguish chronic infarcts from WMH due to SVID.
Although we hypothesized that adding WMH as a tissue
class could improve tumor segmentation performance, we did

not find a significant difference between tumor segmentation
overlap (Dice) in the model that incorporated WMH as an
additional class. Incorporating WMH as a distinct fifth-class
did significantly (p = 0.002; two tailed t-test) improve the
Hausdorff (95th percentile) distance metric within the training
sample. As the Hausdorff95 distance reflects the center of
the lesion, and WMH are often far from the tumor, poorer
Hausdorff95 distance in the four-class model was likely due to
false positive segmentations of WMH as tumor as demonstrated
in Figure 3. However, upon reviewing validation cases with
larger amounts of predicted WMH (Figure 4), it appeared that
the original four-class model, although not explicitly trained
to model WMH, mostly learned to implicitly ignore most
WMH, likely due to spatial characteristics of the WMH being
distant from the primary tumors and in characteristic locations
and shapes. It is possible that the addition of WMH as an
additional class could degrade segmentation performance of
ED that was relatively distal to the center of tumor, thus
the benefits of reducing distal WMH false positives in the
five-class model may have be counterbalanced by increasing
false negatives.
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FIGURE 6 | Relationship between Dice score and lesion volume. (A) Scatter plot and Pearson correlation between WT volume and WT Dice score. (B) Scatter plot
and Pearson correlation between WMH volumes and WMH Dice scores. (C) Scatter plot and Pearson correlation between volumes and Dice scores for both WMH
and WT. (D) Scatter plot and Pearson correlation between log(10) transformed volumes and Dice scores for both WMH and WT.

As evidenced by the BraTS leaderboard, a Dice of ∼0.90 is
considered excellent and has previously been shown to be at a
level similar to inter-rater reliability for BraTS (Visser et al., 2019).
As demonstrated in Figure 6, we found that lesion volume was
an important predictor of Dice scores for both WT (Figure 6A)
and WMH (Figure 6B). When evaluating both WT and WMH
(Figures 6C,D), we found that the majority of the variance in
Dice scores was explained by lesion volume, particularly when
transformed to a logarithmic scale (Figure 6D). Thus, poorer
performance for WMH in our data appear to largely be driven
by smaller lesion sizes. This is consistent with prior literature
that has also shown positive correlations between lesion volumes
and Dice scores (Winzeck et al., 2018; Duong et al., 2019).
Although our reported Dice scores for WMH appear relatively
low (0.42), it should be noted that average volume of WMH in
the MICCAI 2017 dataset was 16.9 cm3 (Kuijf et al., 2019). When

looking at cases with larger volumes of WMH (>10 cm3) the
average Dice score (0.67) was more similar to those reported in
the 2017 MICCAI WMH dataset (0.70–0.80; Kuijf et al., 2019).
A further explanation for reduced segmentation performance
of smaller lesions may be lower inter-rater reliability, such as
what has been reported in multiple sclerosis (Dice ∼0.60; Egger
et al., 2017). A limitation of the current study is that there
is only a single expert annotation for both the BraTS dataset
and the WMH, thus the contribution of inter-rater reliability
could not be assessed. In the future we also plan to improve
detection of smaller lesions by using different neural network
architectures, such as two-stage detectors (Girshick et al., 2014),
or implementing different loss functions, such a focal loss (Lin
et al., 2018; Abraham and Khan, 2019).

As artificial intelligence tools start to become integrated with
clinical workflows for more precise quantitative assessments of
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disease burden, it will be necessary to distinguish, quantify and
longitudinally assess a variety of disease processes, in order
to assist with more accurate and efficient clinical decision-
making. Explicitly tackling intra-subject disease heterogeneity by
training models to perform these tasks should help translate these
advanced computational methods into clinical practice.
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