
Compressive correlation holography
RACHIT SALUJA,1,2 G. R. K. S. SUBRAHMANYAM,3 DEEPAK MISHRA,1,* R. V. VINU,2

AND RAKESH KUMAR SINGH2

1Department of Avionics, Indian Institute of Space Science and Technology (IIST), Trivandrum, 695547 Kerala, India
2Applied and Adaptive Optics Laboratory, Department of Physics, Indian Institute of Space Science and Technology (IIST),
Trivandrum, 695547 Kerala, India
3Department of Electrical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh 517506, India
*Corresponding author: deepak.mishra@iist.ac.in

Received 22 May 2017; revised 22 July 2017; accepted 24 July 2017; posted 24 July 2017 (Doc. ID 295419); published 17 August 2017

We propose and demonstrate a compressive sensing (CS) framework for correlation holography. This is accom-
plished by adopting the principle of compressive sensing and thresholding in the two-point intensity correlation.
The measurement matrix and the sensing matrix that are required for applying the CS framework here are sys-
tematically extracted from the random illuminations of the laser speckle data. Reconstruction results using CS, CS
with thresholding, and intensity correlation are compared. Our study reveals that liminal CS requires far fewer
samples for the reconstruction of the hologram and has wide application in image reconstruction. © 2017Optical

Society of America
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1. INTRODUCTION

Holography allows recording and reconstruction of the complex
field of the light. With the advent of digital holography (DH),
several significant advantages, such as full-field imaging, nonde-
structive imaging, and digital propagation of the field without
mechanical focusing, have been demonstrated [1]. When the
object is obscured by the diffuser, the direct recording and
reconstruction of the object information by conventional holog-
raphy is difficult or impossible due inhomogeneous scattering.
Random scattering diffuses the field information of the object
into a highly disordered complex speckle pattern. Several tech-
niques that use correlation of the random field are proposed to
overcome such a situation [2–13]. Amongmany, the correlation
holography is recently proposed to reconstruct complex infor-
mation of the object as the distribution of the correlation struc-
ture of the random field [9–12]. It is common practice to replace
the ensemble average with temporal (or spatial) averaging,
assuming ergodicity in time or space, in experimental implemen-
tation of correlation imaging [13–15]. This is carried out by the
pseudothermal sources or spatially random fields. However,
realization with pseudothermal sources requires long capturing
time for reconstruction of the images with a good signal-to-noise
ratio. Similarly, the requirement of being wide-sense stationary
in space for the spatial averaging brings strict requirements on
the experimental realization.

Recently, the application of the compressive sensing theory
has been successfully demonstrated in astronomy, terahertz

imaging, holography, ghost imaging, and lidar [16–24]. The
implementation of the compressed sensing approach in
astronomy provides an elegant and effective compression tech-
nique that can overcome the compression issues faced in astro-
nomical data processing [16]. A Fourier imaging system with
compressed sensing is demonstrated using significantly fewer
measurements than a conventional imaging technique, and
the technique has potential applications in terahertz imaging
[17]. In recent years, significant numbers of works were suc-
cessfully demonstrated with CS in holography, and this has re-
sulted in wide applications in 3D tomography and compressive
digital holographic sensing applications [18,19]. CS theory, in
combination with ghost imaging, is effectively employed to
boost the recovered image quality and it enables the image
reconstruction with far less data compared with conventional
ghost imaging [20–22]. A potential application of this is the
development of a ghost imaging lidar system in the area of
remote imaging [23]. Recently, compressed correlation with
random illumination has demonstrated that it is possible to
achieve superior imaging capabilities with less computational
burden [24].

Despite the fact that the implementation of CS theory is
executed in different imaging scenarios, the idea has not
been applied in the correlation holography techniques, which
have attracted significant attention in recent years due to their
3D imaging capability and complex field imaging [9–15].
Correlation-holography-based imaging techniques require a
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large number of random samples in order to implement the
ensemble averaging, and this makes for experimental or com-
putational complexity. This is realized either by exploiting tem-
poral (or spatial) ergodicity. In this work, we demonstrate the
ability of compressive sensing to reconstruct the object using far
fewer random samples than the conventional correlation holog-
raphy, and this can be applied for both temporal and spatial
fluctuating fields. We make use of spatial averaging (rather than
temporal) as a replacement for the ensemble averaging. One
direct outcome of this approach is reduction in the demand
of detecting the random field with large array of detectors
for faithful recovery of the object. We adopt compressive
sensing theory and thresholding in the two-point intensity
correlation and demonstrate the potential by a comparison be-
tween CS, CS with thresholding or liminal CS, and two-point
intensity correlation. We validate our claims by comparing the
peak signal-to-noise ratio (PSNR) using CS, liminal CS, and
two-point intensity correlation methods. The detailed theoreti-
cal proposition and implementation are described below.

2. TWO-POINT INTENSITY CORRELATION

A schematic of the experimental setup is shown in Fig. 1,
wherein the object information represented as EH �r̂�,
scrambled by the diffuser, is Fourier transformed and captured
at the observation plane. The scattered field at the observation
plane is represented as

EH �r� �
Z

EH �r̂� exp�iφ�r̂�� exp
�
−i

2π

λf
r · r̂

�
dr̂; (1)

where r and r̂ are the position vectors on the observation
and random source plane, respectively. φ�r̂� is random phase
introduced by the diffuser, λ is the wavelength of light, and
f is focal length. The intensity IH � jEH �r�j2 at the
observation plane allows us to estimate the covariance function
CH �r1; r2� � hΔIH �r1�ΔIH �r2�i. Here h·i represents ensem-
ble average and ΔIH �r1� � IH �r1� − hIH �r1�i is the spatial
fluctuation in the intensity with respects to its average
value. Assuming the Gaussian statistics of the random field,
the fourth-order correlation can be expressed in terms of
the second-order correlation WH �r1; r2� � hE�

H �r1�EH �r2�i
as [10]

CH �r1; r2� � jWH �r1; r2�j2: (2)

As discussed by Takeda et al. [9], the complex coherence
function in the far field is connected to the source intensity
IH �r̂� at the incoherent source as

WH �Δr� �
Z

IH �r̂� exp
�
−i

2π

λf
Δr · r̂

�
dr̂ : (3)

Equation (3) is the Van Cittert–Zernike theorem, and term
Δr � r2 − r1. A similar relation can also be derived for a spa-
tially Gaussian random field [10–12].

It is observed from Eq. (2) that the phase information of the
coherence function is lost while evaluating intensity correlation.
Therefore, for the recovery of the object information, the lost
phase of the WH �Δr� has to be retrieved. Recently, we have
demonstrated a holographic route to recover the complex co-
herence function [11]. It is based on characterizing one random
field, here EH �r�, with a priori knowledge of second random
field ER�r�, called reference speckle. The coherent addition of
two speckle fields coming from two independent diffusers,
GG1 and GG2 shown in Fig. 1, at the observation plane is
expressed as

I�r� � jEH �r� � ER�r�j2: (4)

Since diffusers used to realize object and reference fields are
different, the cross correlation between these two random fields
is considered to be zero, i.e., hE�

H �r1�ER�r2�i ≈ 0. Therefore,
the covariance of the resultant speckle field is represented as

hΔI�r�ΔI�r � Δr�i � jW �Δr�j2; (5)

where W �Δr� � WH �Δr� �WR�Δr�. Equation (5) depicts
the solution to the phase problem of the usual Hanbury
Brown–Twiss (HBT) approach and is different from higher-
order correlation and phase retrieval as mentioned in Ref. [11].
This coherence wave interference offers a solution to the phase
problem and can be applied for imaging through random
medium using Eq. (3).

In order to reconstruct the object by two-point correlation
[11], we consider spatial random intensities as I�r; m�, with m
(ranging from 1 to M ) being the sequence of random fields.
This can be demonstrated mathematically for the mth pattern.
After making the m samples (up to M ), the reconstruction
procedure involves cross-correlating the recorded intensity
values I�r; m� as shown in Eq. (6):

jW �r�j2 � 1

M

XM
m�1

�I�0;m�− hI�0;m�iM ��I�r;m�− hI�r;m�iM �:

(6)

This procedure utilizes a total of M random patterns and it
involves averaging over M. As the M increases, the fidelity of
the reconstruction also increases, i.e., a largerM often results in
a more accurate and noise-free reconstruction. One of the ways
in which this can be represented tangibly is the compression
ratio N∕M , where N is the total number of pixels in the
computed image.

A. Experimental Configuration
To apply and compare the performance of compressive sensing
in correlation holography, a setup identical to the one described
for Singh et al. [12] is considered. Here, the ensemble average is
replaced by a spatial average (rather than temporal) at the

Fig. 1. Experimental configuration: S, spatial filter; BS, beam
splitter; M, mirror; GG, ground glass; MO, microscope objective.
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camera plane. A brief description along with the setup is
provided in Fig. 1 for better understanding. A He–Ne laser
(594 nm) is spatially filtered and collimated by filtering
assembly S and lens L1.

This beam is then made to pass through a beam splitter BS1
to produce two arms. The reflected arm is then further split
into two by beam-splitter BS2 to produce a Mach–Zehnder
interferometer. One arm of this interferometer is made to pass
through the object. BS3 is then placed after the object to re-
combine the two arms split by BS2. The interference pattern
that contains the object information is made to pass through
GG1, a ground glass plane situated at a distance 150 mm away
from the object, which produces a random speckle pattern
(EH ). This ground glass plane simulates a scattering medium,
which will hinder the direct digital recording of the object in-
formation. On the other hand, the beam transmitted by BS1 is
folded by mirror M3 and focused by a microscope objective
MO at an off-axis location on the ground glass GG2 in order
to generate a reference random field (ER) as described in
Eq. (4). The random field coming from GG2 is also Fourier
transformed by lens L2, and random fields coming from
two arms are coherently superimposed and detected at the
Fourier plane by a monochrome charge coupled device (CCD)
(Prosilica GX2750, 2750 × 2200 pixels, and 4.54 μm pixel
pitch). Different random sets (up toM ) of size 300 × 300 pixels
are generated from the CCD to construct a speckle data of
size (2200 × 2200) pixels (at fixed time t). This framework
requires a high number of samples to reconstruct the hologram;
therefore, the concept of CS is applied to achieve a more effec-
tive solution.

Algorithm 1: CS Algorithmic Framework for Correlation
Holography

1: Formation of Sensing Matrix ϕ:
1. Split the speckle pattern recorded at fixed time t of size

2200 × 2200 intoM small random patterns (square patches/
matrices).

2. Convert these random patterns into row vectors of
dimension 1 × N .

3. Stack them on each other to form a matrix of dimension
M ×N as shown in Fig. 2(a).

2: Formation of Measurement Vector y:
1. Take M small random patterns (square patches/matrices).
2. Extract the center pixel of each random patterns.
3. Stack them on each other to form a column vector of

dimension M × 1 as shown in Fig. 2(b).
3: Convex Optimization:

1. Reconstructing x from y and ϕ using Eq. (7)
2. Reshaping x to the square patch.

3. CS FRAMEWORK FOR CORRELATION
HOLOGRAPHY

The target of this paper is to propose a simple yet effective
CS-based approach to emulate Eq. (6) with only few patterns.

A. Compressive Sensing Theory
The working principle of CS can be defined as the following.
Let x ∈ RN be the signal of interest, ϕ be an M × N matrix,
which is typically called a (random) sensing or measurement

matrix. Let y � ϕx be the M (random) measurements
(M ≪ N ) of x. CS theory asserts that the signal x can be ap-
proximated from fewer measurements y provided that x is
known to be k-sparse (i.e., has at most k non-zero elements)
and ϕ satisfies mathematical properties such as restricted
isometric property (RIP), Spark, etc. [25]. The sensing or
measurement matrix usually employed for extracting the mea-
surements is considered to be an independent and identically
distributed Gaussian random matrix. This recovery problem
can be formulated as follows. Given y and ϕ, recover x by min-
imizing kxk0 subjected to the constraint y � ϕx, where kxk0 is
the 0th norm (or l 0) of x (i.e., the total number of non-zero
elements of x ). However, this is computationally complex to
perform. An alternative to l0 norm that gives appreciably
the same results is minimizing the l 1 norm, if the number
of measurements M > k log�N∕k�. Now, the sparse recovery
of x can be formulated as minimizing kxk1 subjected to the
constraint y � ϕx. This is usually accomplished using the con-
vex optimization algorithms such as basis pursuit, orthogonal
matching pursuit, or gradient projection sparse recovery, etc.
[25,26]. In the proposed compressed correlation holography
to be in-line with the two-point intensity correlation procedure,
we generate sensing matrix (ϕ) and measurement matrix (y)
from the same data, i.e., from experimentally detected speckle.
Note that this is in contrast to compressed ghost imaging
[22,23], wherein data from two detectors are used. Therefore,
CS can be considered as a weighted average considering the
two-point averaging between speckle patches (rows of ϕ )
and their midpoints (elements of y ), where the CS optimization
process ensures that these weights are a sparse representation of
the object; in other words, the averaging can be performed with
much smaller number of speckle patches.

B. Proposed CS-Based Correlation Holography
The application of compressive sensing to correlation hologra-
phy is based on the observation that a computationally efficient
analogy to correlation can be accomplished by the appropriate
selection of the random sensing matrix and the measurements
in the context of correlation holography.

Instead of carrying out two-point correlation explicitly based
on usual spatial averaging as a replacement for the ensemble
average for a spatially ergodic field [Eq. (6)], we rely on the
compressive sensing framework to dig through the data
and present the information we want. This is based on the
observation that the correlation can be recast as the (sparse)
optimization problem. Specifically, the object reconstructed
in two-point correlation as the (averaged) correlation between
(several) speckle patches and their midpoints can be formulated
as an error minimization between the product of the (vector-
ized) speckle patches (ϕ) and the object (x) and their midpoints
(y), i.e., ky − ϕxk, while the sparse solution of this minimiza-
tion problem yields efficient object reconstruction with far
fewer samples.

Here we make the analogy and the formulation of each of its
terms explicit for better clarity. We take the small random pat-
terns (square patches/matrices of size 300 × 300) and reshape
them into row vectors of the dimensions 1 × N , N being
the total number of elements in each random pattern (here
N � 90; 000). Each of these M number of row vectors are
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then stacked on top of each other to form the sensing matrix ϕ,
of the dimension M × N , as shown in Fig. 2(a). Guided by
two-point correlation, where the correlation between the center
pixel and the patch is established explicitly, we also pick the
center pixel of the M patches and stack them to construct
an M × 1 vector so as to implicitly establish the two-point

correlation between the center and the patch through CS opti-
mization, with M being the total number of recorded patterns,
as shown in Fig. 2(b). This vector y and matrix ϕ forms our
measurement vector and sensing matrix, respectively, which are
needed for the CS optimization as shown in Algorithm 1. For
achieving correlation through CS reconstruction, we formulate
our problem as follows:

min
x
kxk1 � λky − ϕxk2; (7)

where x is a desired column vector of dimension 1 × N , and λ is
a Lagrange multiplier. Vector x is then reshaped into a two-
dimensional square patch/image (300 × 300). This particular
optimization problem is an l 1-minimization problem, which is
solved using gradient projection for sparse reconstruction
(GPSR).

The proposed CS framework essentially reconstructs the ob-
ject that well agrees (overall correlates) with the speckle patches

Fig. 2. (a) Schematic to show how the sensing matrix ϕ ∈ RM×N is
formed. In this case, a patch of dimensions 3 × 3 becomes a row vector
of dimensions 1 × 9. (b) A schematic to show how measurement vector
y ∈ RM is formed by stacking the center of four patches on top of
each other.

Fig. 3. Flow chart describing the CS-based algorithm.

Fig. 4. (a) Fringes obtained of the first hologram using liminal CS,
after performing the Fourier transform of Eq. (6). (b) The cropped
version of the flower pattern in the image in Fig. 4(a).

Fig. 5. (a) Final reconstruction of the object at the object plane
using two-point intensity correlation (43,20,000 samples/patterns),
which is taken as the reference for comparison. (b) Final
reconstruction of the object on the object plane using liminal CS
(16,000 samples). (c) Final reconstruction of the object on the object
plane using CS (16,000 samples). (d) Final reconstruction of the
object on the object plane using two-point intensity correlation
(16,000 samples).
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and their midpoints. This analogy directly fits into the CS
framework, as the speckle scatter matrix with which we created
ϕ is random in nature and satisfies the properties like RIP, and
minimizing the error ky − ϕxk accomplishes the solution for
object x that considers (midpoint) correlation between ϕ
and y. This becomes midpoint correlation as y is constructed
from the midpoints of speckle patches with which the columns
of ϕ are created.

4. PROPOSED LIMINAL CS: IMPLEMENTATION
AND EXPERIMENTATION

In order to demonstrate applicability of CS in correlation
holography, we take the resultant speckle pattern for a given
object. We also demonstrate that two-point correlation under

the CS framework can be effectively carried out, and the
random samples required for CS reconstruction of the object
are far lesser than for usual two-point correlation. We further
observe that slight modification in the implementation of the
proposed CS approach by boosting all frequencies by adding
a constant DC offset, and then thresholding improves the
reconstruction performance and enables representation with
even fewer samples while simultaneously denoising the
reconstruction. The entire procedure of the proposed method
is shown in Fig. 3, in which the first four blocks are described
and implemented as discussed in Sections 2 and 3.

The reshaped matrix that we obtain after the compressive
sensing recovery algorithm will contain an interference of
the coherence functions W �Δr� � WH �Δr� �WR�Δr�. The
fringe is then subjected to a Fourier transform, which shows the
hologram of the object at the off-axis spectrum, as shown in
Fig. 4(a).

The hologram obtained, in Fig. 4(a), is cropped out and
moved to the center, as shown in Fig. 4(b). It is then again
subjected to a Fourier transform, which will display the
complex value and the DC component of the object at the
ground-glass plane. Using the angular spectrum method, object
information is propagated to z � 150 mm from the ground
glass, and results are shown in Fig. 5(a) (43,20,000 samples)
and Fig. 5(b) (16,000 samples) for two-point intensity
correlation and liminal CS, respectively. It can be seen from
Figs. 5(c) and 5(d) that the reconstruction at 16,000 samples
is far less accurate than liminal CS.

Fig. 6. (a) 3D mesh of the fringes obtained of the first hologram
using CS. (b) 3D mesh of the fringes obtained of the first hologram
using liminal CS.

Fig. 7. Comparison of the reference (Column 1—43,20,000 samples), liminal CS framework (Column 2—5000, 7000, 11,000 samples), CS
framework (Column 3—5000, 7000, 11,000 samples), and two-point intensity correlation (Column 4—5000, 7000, 11,000 samples).
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Once the hologram is obtained after eliminating a DC com-
ponent of the Fourier spectrum, an offset of τ is added to the
image K � abs�k� � τ, and adding τ boosts all the high-
frequency details. Here k is the image obtained after the first
Fourier transform, without the DC component. This is then
subjected to a threshold ϵ. This threshold is used to denoise
the hologram such that all the lower magnitude elements are
eliminated, to obtain a better recovery of the hologram as
shown in Fig. 6(b). We refer to this approach as liminal CS.
By applying this technique, we could decrease the samples from
20,000 to 16,000 in the Compressive Sensing Framework, for a
near-perfect reconstruction. Also, this has an added advantage
that even with smaller samples, such as 5000 or 6000, the basic
shape of the object can be obtained for the recovered hologram
as shown in Fig. 7. No approach other than liminal CS can
reconstruct the hologram, and with 16,000 samples it gives
a near-perfect reconstruction. This technique gives a better
reconstruction because it simultaneously suppresses the back-
ground of the object and boosts the object details to a higher
range, hence making it more prominent in reconstruction.

We generate a plot to compare the performances of both
CS-based reconstructions and the usual two-point intensity
correlation method. The aim is to demonstrate the ability of
liminal CS to generate a superior PSNR given an equal
number of samples. PSNR is defined as the ratio between the

maximum possible power of a signal and the power of cor-
rupting noise that affects the fidelity of its representation.
The mathematical definition that is used in this work is shown
in Eq. (8), where R is the maximum fluctuation in the image
and MSE is the mean-square error between the original image
and reconstructed image:

PSNR � log10

�
R2

MSE

�
: (8)

All three methods were given a set of samples to work with,
and the resulting PSNR values are plotted accordingly. As ob-
served from Fig. 8, liminal CS has a superior PSNR, given an
equal number of samples. The PSNR values are calculated by
taking the reference as the image obtained by using two-point
intensity correlation with all available samples (43,20,000 sam-
ples). We also show a plot comparing the number of samples
required to reach a specific PSNR by liminal CS and the two-
point intensity correlation method in Fig. 9. We observe that
liminal CS achieves the same PSNR with significantly lesser
samples. From Table 1, we infer that the time taken to recon-
struct using liminal CS is significantly lesser than that of the
usual two-point intensity correlation.

For a window of size 300 × 300, the number of samples con-
sidered for the two-point correlation technique is more than
1,60,000 to achieve a PSNR of 42.9. On the other hand, when
liminal CS is utilized for correlation purposes for extracting
qualitative phase and amplitude information from the object,
we observe that for a window of the same dimensions, we can
reconstruct the image easily at nearly 16,000 samples, which is
10 times less than the optimal number of samples required in
the two-point correlation method.

5. CONCLUSION

In conclusion, we have successfully demonstrated the applica-
tion of compressive sensing in correlation holography; the
doors for future scope in correlation imaging have been thrown
open. Eventually, more fields of optical imaging will be able to
take advantage of the efficient nature of compressive sensing.
Introduction of the CS framework reduces the number of
samples, computational time, and moreover, provides high
signal-to-noise ratio. The proposed technique opens the doors
for possible application of compressed sensing framework for
low coherent source imaging, speckle correlography, and ob-
taining correlation functions and coherence polarization matrices.

Funding. Department of Science and Technology,
Ministry of Science and Technology (DST); Science and
Engineering Research Board (SERB) (EMR/2015/00613);
Indian Institute of Space Science and Technology (IIST)
Trivandrum.

Fig. 8. Graph showing PSNR values (y axis) against the number of
samples utilized for reconstruction.

Fig. 9. Comparison of the number of samples required (in the y
axis) for same PSNR (along the x axis) by two-point correlation and
liminal CS.

Table 1. Time Taken to Reconstruct Using CS
Framework (500 Iterations) and Two-Point Intensity
Correlation

Method Number of Samples Time Taken

Two-point correlation 43,20,000 948� 5%
Liminal CS 16,000 536� 5%
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